Иконки Садхана

Химический анализ и гигиенические нормативы воды

  

Ингредиент

Норматив

Ед. изм.

1

Запах при 20oC

ГОСТ не более 2

балл

2

Запах при 60oC

ГОСТ не более 2

балл

3

Цветность

ГОСТ не более 20

градус

4

Мутность

ГОСТ не более 1,5

мг/дм3

5

РН

ГОСТ от 6 до 9

-

6

Окисляемость

МУ не более 10

мг/дм3

7

Аммиак

СП не более 2

мг/дм3

8

Нитриты

СП не более 3,3

мг/дм3

9

Нитраты

ПДК не более 45

мг/дм3

10

Жесткость воды

ГОСТ не более 7

ммоль

11

Сухой остаток

ГОСТ не более 1000

мг/дм3

12

Хлориды

ГОСТ не более 350

мг/дм3

13

Сульфаты

ГОСТ не более 500

мг/дм3

14

Железо

ГОСТ не более 0,3

мг/дм3

15

Фтор

ГОСТ не более 1,5

мг/дм3

16

Щелочность

Нет не более 10

мг/дм3

17

Кальций

СП не более 30-140

мг/дм3

18

Магний

СП не более 10-85

мг/дм3

19

Натрий

не более 200

мг/дм3

20

Марганец

не более 0,1

мг/дм3

21

Хлор остаточный

не более 0,3

мг/дм3

22

Нефтепродукты

не более 0,1

мг/дм3

23

Полифосфаты

не более 3,5

мг/дм3

24

Кремний

не более 10

мг/дм3

25

Сероводород

не более 0,003

мг/дм3

26

Стронций

не более 7

мг/дм3

 

Также Вы можете ознакомиться с гигиеническими нормативами содержания некоторых вредных веществ в воде.

 

 

Запах

Свойство воды вызывать у человека и животных специфическое раздражение слизистой оболочки носовых ходов. Запах воды характеризуется интенсивностью, которую измеряют в баллах. Запах воды вызывают летучие пахнущие вещества, поступающие в воду в результате процессов жизнедеятельности водных организмов, при биохимическом разложении органических веществ, при химическом взаимодействии содержащихся в воде компонентов, а также с промышленными, сельскохозяйственными и хозяйственно-бытовыми сточными водами.

На запах воды оказывают влияние состав содержащихся в ней веществ, температура, значения рН, степень загрязненности водного объекта, биологическая обстановка, гидрологические условия и т.д.

Определение интенсивности запаха воды

Оценка интенсивности запаха, баллы

Интенсивность запаха

Характер проявления запаха

0

никакого запаха

отсутствие ощутимого запаха

I

очень слабый

запах, не замечаемый потребителем, но обнаруживаемый специалистом

II

слабый

запах, обнаруживаемый потребителем, если обратить на это внимание

III

заметный

запах, легко обнаруживаемый, может быть причиной того, что вода неприятна для питья

IV

отчетливый

запах, обращающий на себя внимание, может заставить воздержаться от питья

V

очень сильный

запах, настолько сильный, что делает воду непригодной для питья

 Вернуться

 

Цветность

Показатель качества воды, характеризующий интенсивность окраски воды и обусловленный содержанием окрашенных соединений; выражается в градусах платиново-кобальтовой шкалы. Определяется путем сравнения окраски испытуемой воды с эталонами.

Цветность природных вод обусловлена главным образом присутствием гумусовых веществ и соединений трехвалентного железа. Количество этих веществ зависит от геологических условий, водоносных горизонтов, характера почв, наличия болот и торфяников в бассейне реки и т.п. Сточные воды некоторых предприятий также могут создавать довольно интенсивную окраску воды.

Цветность природных вод колеблется от единиц до тысяч градусов.

Различают "истинный цвет", обусловленный только растворенными веществами, и "кажущийся" цвет, вызванный присутствием в воде коллоидных и взвешенных частиц, соотношения между которыми в значительной мере определяются величиной pH.

Предельно допустимая величина цветности в водах, используемых для питьевых целей, составляет 35 градусов по платиново-кобальтовой шкале. В соответствии с требованиями к качеству воды в зонах рекреации окраска воды не должна обнаруживаться визуально в столбике высотой 10 см.
Высокая цветность воды ухудшает ее органолептические свойства и оказывает отрицательное влияние на развитие водных растительных и животных организмов в результате резкого снижения концентрации растворенного кислорода в воде, который расходуется на окисление соединений железа и гумусовых веществ.

Вернуться

 

Мутность

Мутность природных вод вызвана присутствием тонкодисперсных примесей, обусловленных нерастворимыми или коллоидными неорганическими и органическими веществами различного происхождения. Качественное определение проводят описательно: слабая опалесценция, опалесценция, слабая, заметная и сильная муть.

В соответствии с гигиеническими требованиями к качеству питьевой воды мутность не должна превышать 1,5 мг/дм3 по каолину.

Мутность воды определяют турбидиметрически (по ослаблению проходящего через пробу света) путем сравнения проб исследуемой воды со стандартными суспензиями. Результаты измерений выражают в мг/дм3 (при использовании основной стандартной суспензии каолина) или в ЕМ/дм3 (единицы мутности на дм3 при использовании основной стандартной суспензии формазина); 1,5 мг/дм3 каолина соответствует 2,6 ЕМ/дм3 формазина. Турбидиметрическое определение предназначено для вод, имеющих переменчивый состав и форму тонкодисперсных примесей. Если пробу предварительно не профильтровать, то турбидиметрически будут определены не только коллоидные, но и более грубодисперсные частицы.

Вернуться

 

Водородный показатель (рН)

Содержание ионов водорода (гидроксония = H3O+) в природных водах определяется в основном количественным соотношением концентраций угольной кислоты и ее ионов:

CO2 + H20 <=> H+ + HCO3- <=> 2 H+ + CO32-


Для удобства выражения содержания водородных ионов была введена величина, представляющая собой логарифм их концентрации, взятый с обратным знаком:

pH = -lg[H+]


Для поверхностных вод, содержащих небольшие количества диоксида углерода, характерна щелочная реакция. Изменения pH тесно связаны с процессами фотосинтеза (при потреблении CO2 водной растительностью высвобождаются ионы ОН-). Источником ионов водорода являются также гумусовые кислоты, присутствующие в почвах. Гидролиз солей тяжелых металлов играет роль в тех случаях, когда в воду попадают значительные количества сульфатов железа, алюминия, меди и других металлов:

Fe2+ + 2H2O => Fe(OH)2 + 2H+


Значение pH в речных водах обычно варьирует в пределах 6,5=8,5, в атмосферных осадках 4,6=6,1, в болотах 5,5=6,0, в морских водах 7,9=8,3. Концентрация ионов водорода подвержена сезонным колебаниям. Зимой величина pH для большинства речных вод составляет 6,8=7,4, летом 7,4=8,2. Величина pH природных вод определяется в некоторой степени геологией водосборного бассейна.

В соответствии с требованиями к составу и свойствам воды водоемов у пунктов питьевого водопользования, воды водных объектов в зонах рекреации, а также воды водоемов рыбохозяйственного назначения, величина pH не должна выходить за пределы интервала значений 6,5=8,5.

Величина pH воды = один из важнейших показателей качества вод. Величина концентрации ионов водорода имеет большое значение для химических и биологических процессов, происходящих в природных водах. От величины pH зависит развитие и жизнедеятельность водных растений, устойчивость различных форм миграции элементов, агрессивное действие воды на металлы и бетон. Величина pH воды также влияет на процессы превращения различных форм биогенных элементов, изменяет токсичность загрязняющих веществ.

В водоеме можно выделить несколько этапов процесса его закисления. На первом этапе рН практически не меняется (ионы бикарбоната успевают полностью нейтрализовать ионы Н+). Так продолжается до тех пор, пока общая щелочность в водоеме не упадет примерно в 10 раз до величины менее 0,1 моль/дм3.

На втором этапе закисления водоема рН воды обычно не поднимается выше 5,5 в течение всего года. О таких водоемах говорят как об умеренно кислых. На этом этапе закисления происходят значительные изменения в видовом составе живых организмов.

На третьем этапе закисления водоема рН стабилизируется на значениях рН<5 (обычно рН 4,5), даже если атмосферные осадки имеют более высокие значения рН. Это связано с присутствием гумусовых веществ и соединений алюминия в водоеме и почвенном слое.

Природные воды в зависимости от рН рационально делить на семь групп.

Группы природных вод в зависимости от рН

Группа

рН

Примечание

Сильнокислые воды

<3

результат гидролиза солей тяжелых металлов (шахтные и рудничные воды

Кислые воды

3=5

поступление в воду угольной кислоты, фульвокислот и других органических кислот в результате разложения органических веществ

Слабокислые воды

5=6,5

присутствие гумусовых кислот в почве и болотных водах (воды лесной зоны)

Нейтральные воды

6,5=7,5

наличие в водах Ca(HCO3)2,
Mg(HCO3)2

Слабощелочные воды

7,5=8,5

наличие в водах Ca(HCO3)2,
Mg(HCO3)2

Щелочные воды

8,5=9,5

присутствие Na2CO3 или NaHCO3

Сильнощелочные воды

>9,5

присутствие Na2CO3 или NaHCO3

 Вернуться

 

Окисляемость перманганатная и бихроматная (ХПК)

Величина, характеризующая содержание в воде органических и минеральных веществ, окисляемых одним из сильных химических окислителей при определенных условиях, называется окисляемостью. Существует несколько видов окисляемости воды: перманганатная, бихроматная, иодатная, цериевая. Наиболее высокая степень окисления достигается методами бихроматной и иодатной окисляемости воды.

Окисляемость выражается в миллиграммах кислорода, пошедшего на окисление органических веществ, содержащихся в 1 дм3 воды.

Состав органических веществ в природных водах формируется под влиянием многих факторов. К числу важнейших относятся внутриводоемные биохимические процессы продуцирования и трансформации, поступления из других водных объектов, с поверхностными и подземными стоками, с атмосферными осадками, с промышленными и хозяйственно-бытовыми сточными водами. Образующиеся в водоеме и поступающие в него извне органические вещества весьма разнообразны по своей природе и химическим свойствам, в том числе по устойчивости к действию разных окислителей. Соотношение содержащихся в воде легко- и трудноокисляемых веществ в значительной мере влияет на окисляемость воды в условиях того или иного метода ее определения.

В поверхностных водах органические вещества находятся в растворенном, взвешенном и коллоидном состояниях. Последние в рутинном анализе отдельно не учитываются, поэтому различают окисляемость фильтрованных (растворенное органическое вещество) и нефильтрованных (общее содержание органических веществ) проб.

Величины окисляемости природных вод изменяются в пределах от долей миллиграммов до десятков миллиграммов в литре в зависимости от общей биологической продуктивности водоемов, степени загрязненности органическими веществами и соединениями биогенных элементов, а также от влияния органических веществ естественного происхождения, поступающих из болот, торфяников и т.п. Поверхностные воды имеют более высокую окисляемость по сравнению с подземными (десятые и сотые доли миллиграмма на 1 дм3), исключение составляют воды нефтяных месторождений и грунтовые воды, питающиеся за счет болот. Горные реки и озера характеризуются окисляемостью 2=3 мг О/дм3, реки равнинные = 5=12 мг О/дм3, реки с болотным питанием = десятки миллиграммов на 1 дм3.

Окисляемость незагрязненных поверхностных вод проявляет довольно отчетливую физико-географическую зональность.

Физико-географическая зональность природных вод

Окисляемость

мг О/дм3

Зона

Очень малая

0=2

Высокогорье

Малая

2=5

Горные районы

Средняя

5=10

Зоны широколиственных лесов, степи, полупустыни и пустыни, а также тундра

Повышенная

15=20

Северная и южная тайга


Окисляемость подвержена закономерным сезонным колебаниям. Их характер определяется, с одной стороны, гидрологическим режимом и зависящим от него поступлением органических веществ с водосбора, с другой, = гидробиологическим режимом.

В водоемах и водотоках, подверженных сильному воздействию хозяйственной деятельности человека, изменение окисляемости выступает как характеристика, отражающая режим поступления сточных вод. Для природных малозагрязненных вод рекомендовано определять перманганатную окисляемость; в более загрязненных водах определяют, как правило, бихроматную окисляемость (ХПК).

В соответствии с требованиями к составу и свойствам воды водоемов у пунктов питьевого водопользования величина ХПК не должна превышать 15 мг О/дм3; в зонах рекреации в водных объектах допускается величина ХПК до 30 мг О/дм3.

В программах мониторинга ХПК используется в качестве меры содержания органического вещества в пробе, которое подвержено окислению сильным химическим окислителем. ХПК применяют для характеристики состояния водотоков и водоемов, поступления бытовых и промышленных сточных вод (в том числе, и степени их очистки), а также поверхностного стока.

Величины ХПК в водоемах с различной степенью загрязненности

Степень загрязнения (классы водоемов)

ХПК, мг О/дм3

Очень чистые

1

Чистые

2

Умеренно загрязненные

3

Загрязненные

4

Грязные

5=15

Очень грязные

>15


Для вычисления концентрации углерода, содержащегося в органических веществах, значение ХПК (мг О/дм3) умножается на 0,375 (коэффициент, равный отношению количества вещества эквивалента углерода к количеству вещества эквивалента кислорода).

Вернуться

 

Аммиак

В природной воде аммиак образуется при разложении азотсодержащих органических веществ. Хорошо растворим в воде с образованием гидроксида аммония. О содержании аммиака в поверхностных водах (см. раздел "Аммоний").

ПДКв аммиака составляет 2,0 мг/дм3, ПДКвр - 0,05 мг/дм3 (лимитирующий показатель вредности - токсикологический).

Вернуться

 

Нитриты

Нитриты представляют собой промежуточную ступень в цепи бактериальных процессов окисления аммония до нитратов (нитрификация - только в аэробных условиях) и, напротив, восстановления нитратов до азота и аммиака (денитрификация - при недостатке кислорода). Подобные окислительно-восстановительные реакции характерны для станций аэрации, систем водоснабжения и собственно природных вод. Кроме того, нитриты используются в качестве ингибиторов коррозии в процессах водоподготовки технологической воды и поэтому могут попасть и в системы хозяйственно-питьевого водоснабжения. Широко известно также применение нитритов для консервирования пищевых продуктов.

В поверхностных водах нитриты находятся в растворенном виде. В кислых водах могут присутствовать небольшие концентрации азотистой кислоты (HNO2) (не диссоциированной на ионы). Повышенное содержание нитритов указывает на усиление процессов разложения органических веществ в условиях более медленного окисления NO2- в NO3-, что указывает на загрязнение водного объекта, т.е. является важным санитарным показателем.

Концентрация нитритов в поверхностных водах составляет сотые (иногда даже тысячные) доли миллиграмма в 1 дм3; в подземных водах концентрация нитритов обычно выше, особенно в верхних водоносных горизонтах (сотые, десятые доли миллиграмма в 1 дм3).

Сезонные колебания содержания нитритов характеризуются отсутствием их зимой и появлением весной при разложении неживого органического вещества. Наибольшая концентрация нитритов наблюдается в конце лета, их присутствие связано с активностью фитопланктона (установлена способность диатомовых и зеленых водорослей восстанавливать нитраты до нитритов). Осенью содержание нитритов уменьшается.

Одной из особенностей распределения нитритов по глубине водного объекта являются хорошо выраженные максимумы, обычно вблизи нижней границы термоклина и в гиполимнионе, где концентрация кислорода снижается наиболее резко.

Для нитритов ПДКв установлена в размере 3,3 мг/дм3 в виде иона NO2- или 1 мг/дм3 в пересчете на азот. ПДКвр - 0,08 мг/дм3 в виде иона NO2- или 0,02 мг/дм3 в пересчете на азот.

В соответствии с требованиями глобальной системы мониторинга состояния окружающей среды (ГСМОС/GEMS) нитрит- и нитрат-ионы входят в программы обязательных наблюдений за составом питьевой воды и являются важными показателями степени загрязнения и трофического статуса природных водоемов.

Вернуться

 

Нитраты

Присутствие нитратных ионов в природных водах связано с:

внутриводоемными процессами нитрификации аммонийных ионов в присутствии кислорода под действием нитрифицирующих бактерий;

атмосферными осадками, которые поглощают образующиеся при атмосферных электрических разрядах оксиды азота (концентрация нитратов в атмосферных осадках достигает 0,9-1 мг/дм3);

промышленными и хозяйственно-бытовыми сточными водами, особенно после биологической очистки, когда концентрация достигает 50 мг/дм3;

стоком с сельскохозяйственных угодий и со сбросными водами с орошаемых полей, на которых применяются азотные удобрения.

Главными процессами, направленными на понижение концентрации нитратов, являются потребление их фитопланктоном и денитрофицирующими бактериями, которые при недостатке кислорода используют кислород нитратов на окисление органических веществ.

В поверхностных водах нитраты находятся в растворенной форме. Концентрация нитратов в поверхностных водах подвержена заметным сезонным колебаниям: минимальная в вегетационный период, она увеличивается осенью и достигает максимума зимой, когда при минимальном потреблении азота происходит разложение органических веществ и переход азота из органических форм в минеральные. Амплитуда сезонных колебаний может служить одним из показателей эвтрофирования водного объекта.

В незагрязненных поверхностных водах концентрация нитрат-ионов не превышает величины порядка десятков микрограммов в 1 дм3 (в пересчете на азот). С нарастанием эвтрофикации абсолютная концентрация нитратного азота и его доля в сумме минерального азота возрастают, достигая n·10-1 мг/дм3. В незагрязненных подземных водах содержание нитратных ионов обычно выражается сотыми, десятыми долями миллиграмма и реже единицами миллиграммов в 1 дм3. Подземные водоносные горизонты в большей степени подвержены нитратному загрязнению, чем поверхностные водоемы (т.к. отсутствует потребитель нитратов).

Значения предельно допустимых концентраций нитратов для овощей и фруктов, мг/кг

Культура

ПДКпр.

Культура

ПДКпр.

Листовые овощи

2000

Картофель

250

Перец сладкий

200

Капуста ранняя

900

Кабачки

400

Морковь

250

Дыни

90

Томаты

150

Арбузы

60

Огурцы

150

Виноград столовый

60

Свекла столовая

1400

Яблоки

60

Лук репчатый

80

Груши

60

Лук перо

600


При длительном употреблении питьевой воды и пищевых продуктов, содержащих значительные количества нитратов (от 25 до 100 мг/дм3 по азоту), резко возрастает концентрация метгемоглобина в крови. Крайне тяжело протекают метгемоглобинемии у грудных детей (прежде всего, искусственно вскармливаемых молочными смесями, приготовленными на воде с повышенным - порядка 200 мг/дм3 - содержанием нитратов) и у людей, страдающих сердечно-сосудистыми заболеваниями. Особенно в этом случае опасны грунтовые воды и питаемые ими колодцы, поскольку в открытых водоемах нитраты частично потребляются водными растениями.

Присутствие нитрата аммония в концентрациях порядка 2 мг/дм3 не вызывает нарушения биохимических процессов в водоеме; подпороговая концентрация этого вещества, не влияющая на санитарный режим водоема, 10 мг/дм3. Повреждающие концентрации соединений азота (в первую очередь, аммония) для различных видов рыб составляют величины порядка сотен миллиграммов в 1 дм3 воды.

В воздействии на человека различают первичную токсичность собственно нитрат-иона; вторичную, связанную с образованием нитрит-иона, и третичную, обусловленную образованием из нитритов и аминов нитрозаминов. Смертельная доза нитратов для человека составляет 8-15 г; допустимое суточное потребление по рекомендациям ФАО/ВОЗ - 5 мг/кг массы тела.

Наряду с описанными эффектами воздействия немаловажную роль играет тот факт, что азот - это один из первостепенных биогенных (необходимых для жизни) элементов. Именно этим обусловлено применение соединений азота в качестве удобрений, но, с другой стороны, с этим связан вклад вынесенного с сельскохозяйственных земель азота в развитие процессов эвтрофикации (неконтролируемого роста биомассы) водоемов. Так, с одного гектара орошаемых земель выносится в водные системы 8-10 кг азота.

ПДКв нитратов составляет 45 мг/дм3 (по NO3-) (тождественно равен стандарту США для питьевой воды), ПДКвр - 40 мг/дм3 (по NO3-) или 9,1 мг/дм3 (по азоту).

Вернуться

 

Жесткость воды

Жесткость воды представляет собой свойство природной воды, зависящее от наличия в ней главным образом растворенных солей кальция и магния. Суммарное содержание этих солей называют общей жесткостью. Общая Жесткость воды подразделяется на карбонатную, обусловленную концентрацией гидрокарбонатов (и карбонатов при рН 8,3) кальция и магния, и некарбонатную = концентрацию в воде кальциевых и магниевых солей сильных кислот. Поскольку при кипячении воды гидрокарбонаты переходят в карбонаты, которые выпадают в осадок, карбонатную жесткость называют временной или устранимой. Остающаяся после кипячения жесткость называется постоянной. Результаты определения жесткости воды обычно выражают в мг-экв/дм3.

В естественных условиях ионы кальция, магния и других щелочноземельных металлов, обуславливающих жесткость воды, поступают в воду в результате взаимодействия растворенного диоксида углерода с карбонатными минералами и других процессов растворения и химического выветривания горных пород. Источником этих ионов являются также микробиологические процессы, протекающие в почвах на площади водосбора, в донных отложениях, а также сточные воды различных предприятий.

Жесткость воды колеблется в широких пределах. Вода с жесткостью менее 4 мг-экв/дм3 считается мягкой, от 4 до 8 мг-экв/дм3 = средней жесткости, от 8 до 12 мг-экв/дм3 = жесткой и выше 12 мг-экв/дм3 = очень жесткой. Общая жесткость колеблется от единиц до десятков, иногда сотен мг-экв/дм3, причем карбонатная жесткость составляет до 70=80% от общей жесткости.

Обычно преобладает жесткость, обусловленная ионами кальция (до 70%); однако в отдельных случаях магниевая жесткость может достигать 50=60%. Жесткость морской воды и океанов значительно выше (десятки и сотни мг-экв/дм3). Жесткость поверхностных вод подвержена заметным сезонным колебаниям, достигая обычно наибольшего значения в конце зимы и наименьшего в период половодья.

Высокая жесткость воды ухудшает органолептические свойства воды, придавая ей горьковатый вкус и оказывая действие на органы пищеварения.

Величина общей жесткости в питьевой воде не должна превышать 10,0 мг-экв/дм3. Особые требования предъявляются к технической воде (из-за образования накипи).

Вернуться

 

Хлориды

В речных водах и водах пресных озер содержание хлоридов колеблется от долей миллиграмма до десятков, сотен, а иногда и тысяч миллиграммов на литр. В морских и подземных водах содержание хлоридов значительно выше - вплоть до пересыщенных растворов и рассолов.

Хлориды являются преобладающим анионом в высокоминерализованных водах. Концентрация хлоридов в поверхностных водах подвержена заметным сезонным колебаниям, коррелирующим с изменением общей минерализации воды.

Первичными источниками хлоридов являются магматические породы, в состав которых входят хлорсодержащие минералы (содалит, хлорапатит и др.), соленосные отложения, в основном галит. Значительные количества хлоридов поступают в воду в результате обмена с океаном через атмосферу, взаимодействия атмосферных осадков с почвами, особенно засоленными, а также при вулканических выбросах. Возрастающее значение приобретают промышленные и хозяйственно-бытовые сточные воды.

В отличие от сульфатных и карбонатных ионов хлориды не склонны к образованию ассоциированных ионных пар. Из всех анионов хлориды обладают наибольшей миграционной способностью, что объясняется их хорошей растворимостью, слабо выраженной способностью к сорбции взвешенными веществами и потреблением водными организмами. Повышенные содержания хлоридов ухудшают вкусовые качества воды, делают ее малопригодной для питьевого водоснабжения и ограничивают применение для многих технических и хозяйственных целей, а также для орошения сельскохозяйственных угодий. Если в питьевой воде есть ионы натрия, то концентрация хлорида выше 250 мг/дм3 придает воде соленый вкус. Концентрации хлоридов и их колебания, в том числе суточные, могут служить одним из критериев загрязненности водоема хозяйственно-бытовыми стоками.

Нет данных о том, что высокие концентрации хлоридов оказывают вредное влияние на человека. ПДКв составляет 350 мг/дм3, ПДКвр - 300 мг/дм3.

Вернуться

 

Сульфаты

Сульфаты присутствуют практически во всех поверхностных водах и являются одними из важнейших анионов.

Главным источником сульфатов в поверхностных водах являются процессы химического выветривания и растворения серосодержащих минералов, в основном гипса, а также окисления сульфидов и серы:

2FeS2 + 7O2 + 2H2O = 2FeSO4 + 2H2SO4

 

2S + 3O2 + 2H2O = 2H2SO4


Значительные количества сульфатов поступают в водоемы в процессе отмирания организмов, окисления наземных и водных веществ растительного и животного происхождения и с подземным стоком.

В больших количествах сульфаты содержатся в шахтных водах и в промышленных стоках производств, в которых используется серная кислота, например, окисление пирита. Сульфаты выносятся также со сточными водами коммунального хозяйства и сельскохозяйственного производства.

Ионная форма SO42- характерна только для маломинерализованных вод. При увеличении минерализации сульфатные ионы склонны к образованию устойчивых ассоциированных нейтральных пар типа CaSO4, MgSO4.

Содержание сульфатных ионов в растворе ограничивается сравнительно малой растворимостью сульфата кальция (произведение растворимости сульфата кальция L=6,1·10-5). При низких концентрациях кальция, а также в присутствии посторонних солей концентрация сульфатов может значительно повышаться.

Сульфаты активно участвуют в сложном круговороте серы. При отсутствии кислорода под действием сульфатредуцирующих бактерий они восстанавливаются до сероводорода и сульфидов, которые при появлении в природной воде кислорода снова окисляются до сульфатов. Растения и другие автотрофные организмы извлекают растворенные в воде сульфаты для построения белкового вещества. После отмирания живых клеток гетеротрофные бактерии освобождают серу протеинов в виде сероводорода, легко окисляемого до сульфатов в присутствии кислорода.

Концентрация сульфата в природной воде лежит в широких пределах. В речных водах и в водах пресных озер содержание сульфатов часто колеблется от 5-10 до 60 мг/дм3, в дождевых водах - от 1 до 10 мг/дм3. В подземных водах содержание сульфатов нередко достигает значительно больших величин.

Концентрация сульфатов в поверхностных водах подвержена заметным сезонным колебаниям и обычно коррелирует с изменением общей минерализации воды. Важнейшим фактором, определяющим режим сульфатов, являются меняющиеся соотношения между поверхностным и подземным стоками. Заметное влияние оказывают окислительно-восстановительные процессы, биологическая обстановка в водном объекте и хозяйственная деятельность человека.

Повышенные содержания сульфатов ухудшают органолептические свойства воды и оказывают физиологическое воздействие на организм человека. Поскольку сульфат обладает слабительными свойствами, его предельно допустимая концентрация строго регламентируется нормативными актами. Весьма жесткие требования по содержанию сульфатов предъявляются к водам, питающим паросиловые установки, поскольку сульфаты в присутствии кальция образуют прочную накипь. Вкусовой порог сульфата магния лежит в пределах от 400 до 600 мг/дм3, для сульфата кальция - от 250 до 800 мг/дм3. Наличие сульфата в промышленной и питьевой воде может быть как полезным, так и вредным.

ПДКв сульфатов составляет 500 мг/дм3, ПДКвр - 100 мг/дм3.

Не замечено, чтобы сульфат в питьевой воде влиял на процессы коррозии, но при использовании свинцовых труб концентрация сульфатов выше 200 мг/дм3 может привести к вымыванию в воду свинца.

Вернуться

 

Железо

Главными источниками соединений железа в поверхностных водах являются процессы химического выветривания горных пород, сопровождающиеся их механическим разрушением и растворением. В процессе взаимодействия с содержащимися в природных водах минеральными и органическими веществами образуется сложный комплекс соединений железа, находящихся в воде в растворенном, коллоидном и взвешенном состояниях. Значительные количества железа поступают с подземным стоком и со сточными водами предприятий металлургической, металлообрабатывающей, текстильной, лакокрасочной промышленности и с сельскохозяйственными стоками.

Фазовые равновесия зависят от химического состава вод, рН, Eh и в некоторой степени от температуры. В рутинном анализе во взвешенную форму выделяют частицы с размером более 0,45 мкм. Она представлена преимущественно железосодержащими минералами, гидратом оксида железа и соединениями железа, сорбированными на взвесях. Истинно растворенную и коллоидную форму обычно рассматривают совместно. Растворенное железо представлено соединениями, находящимися в ионной форме, в виде гидроксокомплексов и комплексов с растворенными неорганическими и органическими веществами природных вод. В ионной форме мигрирует главным образом Fe(II), а Fe(III) в отсутствии комплексообразующих веществ не может в значительных количествах находиться в растворенном состоянии.

Железо обнаруживается в основном в водах с низкими значениями Eh.

В результате химического и биохимического (при участии железобактерий) окисления Fe(II) переходит в Fe(III), которое, гидролизуясь, выпадает в осадок в виде Fe(OH)3. Как для Fе(II), так и для Fe(III) характерна склонность к образованию гидроксокомплексов типа [Fe(OH)2]+, [Fe2(OH)2]4+, [Fe2(OH)3]3+, [Fe(OH)3]- и других, сосуществующих в растворе в разных концентрациях в зависимости от рН и в целом определяющих состояние системы железо-гидроксил. Основной формой нахождения Fe(III) в поверхностных водах являются его комплексные соединения с растворенными неорганическими и органическими соединениями, главным образом гумусовыми веществами. При рН 8,0 основной формой является Fe(OH)3. Коллоидная форма железа наименее изучена, она представляет собой гидрат оксида железа Fe(OH)3 и комплексы с органическими веществами.

Содержание железа в поверхностных водах суши составляет десятые доли миллиграмма в 1 дм3, вблизи болот - единицы миллиграммов в 1 дм3. Повышенное содержание железа наблюдается в болотных водах, в которых оно находится в виде комплексов с солями гуминовых кислот - гуматами. Наибольшие концентрации железа (до нескольких десятков и сотен миллиграммов в 1 дм3) наблюдаются в подземных водах с низкими значениями рН.

Являясь биологически активным элементом, железо в определенной степени влияет на интенсивность развития фитопланктона и качественный состав микрофлоры в водоеме.

Концентрация железа подвержена заметным сезонным колебаниям. Обычно в водоемах с высокой биологической продуктивностью в период летней и зимней стагнации заметно увеличение концентрации железа в придонных слоях воды. Осенне-весеннее перемешивание водных масс (гомотермия) сопровождается окислением Fe(II) в Fе(III) и выпадением последнего в виде Fe(OH)3.

Содержание железа в воде выше 1-2 мг Fe/дм3 значительно ухудшает органолептические свойства, придавая ей неприятный вяжущий вкус, и делает воду малопригодной для использования в технических целях.

ПДКв железа составляет 0,3 мг Fe/дм3 (лимитирующий показатель вредности - органолептический), ПДКвр - 0,1 мг/дм3 (лимитирующий показатель вредности - токсикологический).

Вернуться

 

Фтор

В речные воды фтор поступает из пород и почв при разрушении фторсодержащих минералов (апатит, турмалин) с почвогрунтовыми водами и при непосредственном смыве поверхностными водами. Источником фтора также служат атмосферные осадки. Повышенное содержание фтора может быть в некоторых сточных водах предприятий стекольной и химической промышленности (производство фосфорных удобрений, стали, алюминия), в некоторых видах шахтных вод и в сточных водах рудообогатительных фабрик.

В природных водах фтор находится в виде фторид-иона F- и комплексных ионов [AlF6]3-, [FeF4]-, [FeF5]2-, [FeF6]3-, [CrF6]3-, [TiF6]2- и др.

Миграционная способность фтора в природных водах в значительной степени зависит от содержания в них ионов кальция, дающих с ионами фтора малорастворимое соединение (произведение растворимости фторида кальция L = 4·10-11). Большую роль играет режим углекислоты, которая растворяет карбонат кальция, переводя его в гидрокарбонат. Повышенные значения рН способствуют увеличению подвижности фтора.

Содержание фтора в речных водах колеблется от 0,05 до 1,9 мг/дм3, атмосферных осадках - от 0,05 до 0,54 мг/дм3, подземных водах - от 0,3 до 4,6 мг/дм3, иногда достигая насыщения по отношению к CaF2. В термальных водах концентрация фтора достигает в отдельных случаях 10 мг/дм3, в океанах фтора содержится до 1,3 мг/дм3.

Фтор является устойчивым компонентом природных вод. Внутригодовые колебания концентрации фтора в речных водах невелики (обычно не более, чем в 2 раза). Фтор поступает в реки преимущественно с грунтовыми водами. Содержание фтора в паводковый период всегда ниже, чем в меженный, так как понижается доля грунтового питания.

Повышенные количества фтора в воде (более 1,5 мг/дм3) оказывают вредное действие на людей и животных, вызывая костное заболевание (флюороз). Содержание фтора в питьевой воде лимитируется. Однако очень низкое содержание фтора в питьевых водах (менее 0,01 мг/дм3) также вредно сказывается на здоровье, вызывая опасность заболевания кариесом зубов.

ПДКв фтора составляет 1,5 мг/дм3 (лимитирующий показатель вредности - санитарно-токсикологический).

Вернуться

 

Щелочность

Под щелочностью природных или очищенных вод понимают способность некоторых их компонентов связывать эквивалентное количество сильных кислот. Щелочность обусловлена наличием в воде анионов слабых кислот (карбонатов, гидрокарбонатов, силикатов, боратов, сульфитов, гидросульфитов, сульфидов, гидросульфидов, анионов гуминовых кислот, фосфатов). Их сумма называется общей щелочностью. Ввиду незначительной концентрации трех последних ионов общая щелочность воды обычно определяется только анионами угольной кислоты (карбонатная щелочность). Анионы, гидролизуясь, образуют гидроксид-ионы:

CO32- + H2O <=> HCO3- + OH-

HCO3- + H2O <=> H2CO3 + OH-



Щелочность определяется количеством сильной кислоты, необходимой для нейтрализации 1 дм3 воды. Щелочность большинства природных вод определяется только гидрокарбонатами кальция и магния, pH этих вод не превышает 8,3.

Определение щелочности полезно при дозировании химических веществ, необходимых на обработку вод для водоснабжения, а также при реагентной очистке некоторых сточных вод. Определение щелочности при избыточных концентрациях щелочноземельных металлов важно для установлении пригодности воды для ирригации. Вместе со значениями рН щелочность воды служит для расчета содержания карбонатов и баланса угольной кислоты в воде.

Вернуться

 

Кальций

Главными источниками поступления кальция в поверхностные воды являются процессы химического выветривания и растворения минералов, прежде всего известняков, доломитов, гипса, кальцийсодержащих силикатов и других осадочных и метаморфических пород.

CaCO3 + CO2 + H2O <=> Са(HCO3)2 <=> Ca2+ + 2HCO3-


Растворению способствуют микробиологические процессы разложения органических веществ, сопровождающиеся понижением рН.

Большие количества кальция выносятся со сточными водами силикатной, металлургической, стекольной, химической промышленности и со стоками сельскохозяйственных угодий, особенно при использовании кальцийсодержащих минеральных удобрений.

Характерной особенностью кальция является склонность образовывать в поверхностных водах довольно устойчивые пересыщенные растворы CaCO3.Ионная форма (Ca2+) характерна только для маломинерализованных природных вод. Известны довольно устойчивые комплексные соединения кальция с органическими веществами, содержащимися в воде. В некоторых маломинерализованных окрашенных водах до 90-100% ионов кальция могут быть связаны гумусовыми кислотами.

В речных водах содержание кальция редко превышает 1 г/дм3. Обычно же его концентрации значительно ниже.

Концентрация кальция в поверхностных водах подвержена заметным сезонным колебаниям. В период понижения минерализации (весной) ионам кальция принадлежит преобладающая роль, что связано с легкостью выщелачивания растворимых солей кальция из поверхностного слоя почв и пород.

ПДКвр кальция составляет 180 мг/дм3.

Довольно жесткие требования к содержанию кальция предъявляются к водам, питающим паросиловые установки, поскольку в присутствии карбонатов, сульфатов и ряда других анионов кальций образует прочную накипь. Данные о содержании кальция в водах необходимы также при решении вопросов, связанных с формированием химического состава природных вод, их происхождением, а также при исследовании карбонатно-кальциевого равновесия.

Вернуться

 

Магний

В поверхностные воды магний поступает в основном за счет процессов химического выветривания и растворения доломитов, мергелей и других минералов. Значительные количества магния могут поступать в водные объекты со сточными водами металлургических, силикатных, текстильных и других предприятий.

В речных водах содержание магния обычно колеблется от нескольких единиц до десятков миллиграммов в 1 дм3.

Содержание магния в поверхностных водах подвержено заметным колебаниям: как правило, максимальные концентрации наблюдаются в меженный период, минимальные - в период половодья.

ПДКвр ионов Мg2+ составляет 40 мг/дм3.

Вернуться

 

Натрий

Натрий является одним из главных компонентов химического состава природных вод, определяющих их тип.

Основным источником поступления натрия в поверхностные воды суши являются изверженные и осадочные породы и самородные растворимые хлористые, сернокислые и углекислые соли натрия. Большое значение имеют также биологические процессы, протекающие на водосборе, в результате которых образуются растворимые соединения натрия. Кроме того, натрий поступает в природные воды с хозяйственно-бытовыми и промышленными сточными водами и с водами, сбрасываемыми с орошаемых полей.

В поверхностных водах натрий мигрирует преимущественно в растворенном состоянии. Концентрация его в речных водах колеблется от 0,6 до 300 мг/дм3 в зависимости от физико-географических условий и геологических особенностей бассейнов водных объектов. В подземных водах концентрация натрия колеблется в широких пределах - от миллиграммов до граммов и десятков граммов в 1 дм3. Это определяется составом водовмещающих пород, глубиной залегания подземных вод и другими условиями гидрогеологической обстановки.

ПДКв натрия составляет 200 мг/дм3, ПДКвр - 120 мг/дм3.

Вернуться

 

Марганец

В поверхностные воды марганец поступает в результате выщелачивания железомарганцевых руд и других минералов, содержащих марганец (пиролюзит, псиломелан, браунит, манганит, черная охра). Значительные количества марганца поступают в процессе разложения водных животных и растительных организмов, особенно сине-зеленых, диатомовых водорослей и высших водных растений. Соединения марганца выносятся в водоемы со сточными водами марганцевых обогатительных фабрик, металлургических заводов, предприятий химической промышленности и с шахтными водами.

Понижение концентрации ионов марганца в природных водах происходит в результате окисления Mn(II) до MnO2 и других высоковалентных оксидов, выпадающих в осадок. Основные параметры, определяющие реакцию окисления, - концентрация растворенного кислорода, величина рН и температура. Концентрация растворенных соединений марганца понижается вследствие утилизации их водорослями.

Главная форма миграции соединений марганца в поверхностных водах - взвеси, состав которых определяется в свою очередь составом пород, дренируемых водами, а также коллоидные гидроксиды тяжелых металлов и сорбированные соединения марганца. Существенное значение в миграции марганца в растворенной и коллоидной формах имеют органические вещества и процессы комплексообразования марганца с неорганическими и органическими лигандами. Mn(II) образует растворимые комплексы с бикарбонатами и сульфатами. Комплексы марганца с ионом хлора встречаются редко. Комплексные соединения Mn(II) с органическими веществами (аминами, органическими кислотами, аминокислотами и гумусовыми веществами) обычно менее прочны, чем аналогичные соединения с другими переходными металлами. Mn(III) в повышенных концентрациях может находиться в растворенном состоянии только в присутствии сильных комплексообразователей, Mn(VII) в природных водах не встречается.

В речных водах содержание марганца колеблется обычно от 1 до 160 мкг/дм3, среднее содержание в морских водах составляет 2 мкг/дм3, в подземных - n·102-n·103 мкг/дм3. Концентрация марганца в поверхностных водах подвержена сезонным колебаниям.

Факторами, определяющими изменения концентраций марганца, являются соотношение между поверхностным и подземным стоком, интенсивность потребления его при фотосинтезе, разложение фитопланктона, микроорганизмов и высшей водной растительности, а также процессы осаждения его на дно водных объектов.

Роль марганца в жизни высших растений и водорослей водоемов весьма велика. Марганец способствует утилизации CO2 растениями, чем повышает интенсивность фотосинтеза, участвует в процессах восстановления нитратов и ассимиляции азота растениями. Марганец способствует переходу активного Fe(II) в Fe(III), что предохраняет клетку от отравления, ускоряет рост организмов и т.д. Важная экологическая и физиологическая роль марганца вызывает необходимость изучения марганца и его распределения в природных водах.

Для марганца ПДКв (по иону марганца) установлена 0,1 мг/дм3 (лимитирующий показатель вредности - органолептический), ПДКвр - 0,01 мг/дм3 (лимитирующий показатель вредности - токсикологический).

Вернуться

 

Хлор остаточный

Хлор, присутствующий в воде в виде хлорноватистой кислоты или иона гипохлорита, принято называть свободным хлором. Хлор, существующий в виде хлораминов (моно- и ди-), а также в виде треххлористого азота, называют связанным хлором. Общий хлор - это сумма свободного и связанного хлора.

Свободный хлор достаточно часто применяют для дезинфекции питьевой и сточной воды. В промышленности хлор используют при отбеливании в бумажном производстве, производстве ваты, для уничтожения паразитов в холодильных установках и т.д. При растворении хлора в воде образуются соляная и хлорноватистая кислоты:

Cl2 + H2O <=> H+ + Cl- + HClO


В зависимости от условий, таких как pH, температура, количество органических примесей и аммонийного азота, хлор может присутствовать и в других формах, включая ион гипохлорита (OCl-) и хлорамины.

Активный хлор должен отсутствовать в воде водоемов, лимитирующий показатель вредности общесанитарный.

Вернуться

 

Углеводороды (нефтепродукты)

Нефтепродукты относятся к числу наиболее распространенных и опасных веществ, загрязняющих поверхностные воды. Нефть и продукты ее переработки представляют собой чрезвычайно сложную, непостоянную и разнообразную смесь веществ (низко- и высокомолекулярные предельные, непредельные алифатические, нафтеновые, ароматические углеводороды, кислородные, азотистые, сернистые соединения, а также ненасыщенные гетероциклические соединения типа смол, асфальтенов, ангидридов, асфальтеновых кислот). Понятие "нефтепродукты" в гидрохимии условно ограничивается только углеводородной фракцией (алифатические, ароматические, алициклические углеводороды).

Большие количества нефтепродуктов поступают в поверхностные воды при перевозке нефти водным путем, со сточными водами предприятий нефтедобывающей, нефтеперерабатывающей, химической, металлургической и других отраслей промышленности, с хозяйственно-бытовыми водами. Некоторые количества углеводородов поступают в воду в результате прижизненных выделений растительными и животными организмами, а также в результате их посмертного разложения.

В результате протекающих в водоеме процессов испарения, сорбции, биохимического и химического окисления концентрация нефтепродуктов может существенно снижаться, при этом значительным изменениям может подвергаться их химический состав. Наиболее устойчивы ароматические углеводороды, наименее - н-алканы.

Нефтепродукты находятся в различных миграционных формах: растворенной, эмульгированной, сорбированной на твердых частицах взвесей и донных отложений, в виде пленки на поверхности воды. Обычно в момент поступления масса нефтепродуктов сосредоточена в пленке. По мере удаления от источника загрязнения происходит перераспределение между основными формами миграции, направленное в сторону повышения доли растворенных, эмульгированных, сорбированных нефтепродуктов. Количественное соотношение этих форм определяется комплексом факторов, важнейшими из которых являются условия поступления нефтепродуктов в водный объект, расстояние от места сброса, скорость течения и перемешивания водных масс, характер и степень загрязненности природных вод, а также состав нефтепродуктов, их вязкость, растворимость, плотность, температура кипения компонентов.При санитарно-химическом контроле определяют, как правило, сумму растворенных, эмульгированных и сорбированных форм нефти.

Содержание нефтепродуктов в речных, озерных, морских, подземных водах и атмосферных осадках колеблется в довольно широких пределах и обычно составляет сотые и десятые доли мг/дм3.

В незагрязненных нефтепродуктами водных объектах концентрация естественных углеводородов может колебаться в морских водах от 0,01 до 0,10 мг/дм3 и выше, в речных и озерных водах от 0,01 до 0,20 мг/дм3, иногда достигая 1-1,5 мг/дм3. Содержание естественных углеводородов определяется трофическим статусом водоема и в значительной мере зависит от биологической ситуации в водоеме.

Неблагоприятное воздействие нефтепродуктов сказывается различными способами на организме человека, животном мире, водной растительности, физическом, химическом и биологическом состоянии водоема. Входящие в состав нефтепродуктов низкомолекулярные алифатические, нафтеновые и особенно ароматические углеводороды оказывают токсическое и, в некоторой степени, наркотическое воздействие на организм, поражая сердечно-сосудистую и нервную системы. Наибольшую опасность представляют полициклические конденсированные углеводороды типа 3,4-бензапирена, обладающие канцерогенными свойствами. Нефтепродукты обволакивают оперение птиц, поверхность тела и органы других гидробионтов, вызывая заболевания и гибель.

Отрицательное влияние нефтепродуктов, особенно в концентрациях 0,001-10 мг/дм3, и присутствие их в виде пленки сказывается и на развитии высшей водной растительности и микрофитов.

В присутствии нефтепродуктов вода приобретает специфический вкус и запах, изменяется ее цвет, рН, ухудшается газообмен с атмосферой.

ПДКв нефтепродуктов составляет 0,3 мг/дм3 (лимитирующий показатель вредности - органолептический), ПДКвр - 0,05 мг/дм3 (лимитирующий показатель вредности - рыбохозяйственный). Присутствие канцерогенных углеводородов в воде недопустимо.

Вернуться

 

Полифосфаты

Полифосфаты можно описать следующими химическими формулами:

Men(PO3)n, Men+2PnO3n+1, MenH2PnO3n+1


Полифосфаты применяются для умягчения воды, обезжиривания волокна, как компонент стиральных порошков и мыла, ингибитор коррозии, катализатор, в пищевой промышленности.

Полифосфаты малотоксичны. Токсичность полифосфатов объясняется их способностью к образованию комплексов с биологически важными ионами, особенно с кальцием.

Установленное допустимое остаточное количество полифосфатов в воде хозяйственно-питьевого назначения составляет 3,5 мг/дм3 (лимитирующий показатель вредности - органолептический).

Вернуться

 

Кремний

Кремний является постоянным компонентом химического состава природных вод.Этому способствует в отличие от других компонентов повсеместная распространенность соединений кремния в горных породах, и только малая растворимость последних объясняет малое содержание кремния в воде.

Главным источником соединений кремния в природных водах являются процессы химического выветривания и растворения кремнийсодержащих минералов, например алюмосиликатов:

KMg3AlSi3O10(OH)2+7H2CO3+1/2H2O <=> K++3Mg2++7HCO3-+2H4SiO4+1/2Al2Si2O5(OH)4

Значительные количества кремния поступают в природные воды в процессе отмирания наземных и водных растительных организмов, с атмосферными осадками, а также со сточными водами предприятий, производящих керамические, цементные, стекольные изделия, силикатные краски, вяжущие материалы, кремнийорганический каучук и т.д.

Формы соединений, в которых находится кремний в растворе, весьма многообразны и меняются в зависимости от минерализации, состава воды и значений рН. Часть кремния находится в истинно растворенном состоянии в виде кремниевой кислоты и поликремниевых кислот:

H4SiO4 <=> H + H3SiO4-

 

Соотношение форм производных кремниевой кислоты в воде в зависимости от значений рН, % количества вещества эквивалентов
(К1 = 1,41·10-10)

Форма

рН

7

8

9

10

[H4SiO4]

99,9

98,6

87,7

41,5

[H3SiO4-]

0,1

1,4

12,3

58,5


Поликремниевые кислоты имеют переменный состав типа mSiO2·nH2O, где m и n - целые числа. Кроме того, кремний содержится в природных водах в виде коллоидов типа xSiO2·yH2O.

Концентрация кремния в речных водах колеблется обычно от 1 до 20 мг/дм3; в подземных водах его концентрация возрастает от 20 до 30 мг/дм3, а в горячих термальных водах содержание кремния может достигать сотен миллиграммов в 1 дм3.

Сравнительно малое содержание кремния в поверхностных водах, уступающее растворимости диоксида кремния (125 мг/дм3 при 26°С, 170 мг/дм3 при 38°С), указывает на наличие в воде процессов, уменьшающих его концентрацию. К ним надо отнести потребление кремния водными организмами, многие из которых, например диатомовые водоросли, строят свой скелет из кремния. Кроме того, кремниевая кислота как более слабая вытесняется из раствора угольной кислотой:

Na4SiO4 + 4CO2 + 4H2O = H4SiO4 + 4NaHCO3


Неустойчивости кремния в растворе способствует и склонность кремниевой кислоты при определенных условиях переходить в гель.

Режим кремния в поверхностных водах до некоторой степени сходен с режимом соединений азота и фосфора, однако кремний никогда не лимитирует развитие растительности.

ПДКв кремния равна 10 мг/дм3.

Вернуться

 

Сероводород и сульфиды

Обычно в водах сероводород не содержится или же присутствует в незначительных количествах в придонных слоях, главным образом в зимний период, когда затруднена аэрация и ветровое перемешивание водных масс. Иногда сероводород появляется в заметных количествах в придонных слоях водоемов и в летнее время в периоды интенсивного биохимического окисления органических веществ. Наличие сероводорода в водах служит показателем сильного загрязнения водоема органическими веществами.

Сероводород в природных водах находится в виде недиссоциированных молекул H2S, ионов гидросульфида HS- и весьма редко - ионов сульфида S2-. Соотношение между концентрациями этих форм определяется значениями рН воды: при рН < 10 содержанием ионов сульфида можно пренебречь, при рН 7 содержание H2S и HS- примерно одинаково, при рН 4 сероводород почти полностью (99,8%) находится в молекулярной форме.

Главным источником сероводорода и сульфидов в поверхностных водах являются восстановительные процессы, протекающие при бактериальном разложении и биохимическом окислении органических веществ естественного происхождения, и веществ, поступающих в водоем со сточными водами (хозяйственно-бытовыми, предприятий пищевой, металлургической, химической промышленности, производства сульфатной целлюлозы (0,01-0,014 мг/дм3) и др.).

Особенно интенсивно процессы восстановления происходят в подземных водах и придонных слоях водоемов в условиях слабого перемешивания и дефицита кислорода. Значительные количества сероводорода и сульфидов могут поступать со сточными водами нефтеперерабатывающих заводов, с городскими сточными водами, водами производств минеральных удобрений.

Концентрация сероводорода в водах быстро уменьшается за счет окисления кислородом, растворенным в воде, и микробактериологических процессов (тионовыми, бесцветными и окрашенными серными бактериями).В процессе окисления сероводорода образуются сера и сульфаты. Интенсивность процессов окисления сероводорода может достигать 0,5 г сероводорода на 1 дм3 в сутки.

Причиной ограничения концентраций в воде является высокая токсичность сероводорода, а также неприятный запах, который резко ухудшает органолептические свойства воды, делая ее непригодной для питьевого водоснабжения и других технических и хозяйственных целей. Появление сероводорода в придонных слоях служит признаком острого дефицита кислорода и развития заморных явлений.

Для водоемов санитарно-бытового и рыбохозяйственного пользования наличие сероводорода и сульфидов недопустимо.

Вернуться

 

Стронций

Источниками стронция в природных водах являются горные породы, наибольшие количества его содержат гипсоносные отложения.

Низкая концентрация стронция в природных водах объясняется слабой растворимостью их сернокислых соединений (растворимость SrSO4 при 18°С 114 мг/дм3).

В пресных водах концентрация стронция обычно намного ниже 1 мг/дм3 и выражается в микрограммах на литр. Встречаются районы с повышенной концентрацией этого иона в водах.

Будучи близок к кальцию по химическим свойствам, стронций резко отличается от него по своему биологическому действию. Избыточное содержание этого элемента в почвах, водах и продуктах питания вызывает "уровскую болезнь" у человека и животных (по названию реки Уров в Восточном Забайкалье) - поражение и деформацию суставов, задержку роста и др.

ПДКв составляет 7 мг/дм3 (лимитирующий показатель вредности - санитарно-токсикологический).

Вернуться

 

 

 

 

 

Гигиенические нормативы качества воды

*       Микробиологические и паразитологические показатели.  
прочитать

*       Органолептические показатели.  
прочитать

*       Содержание вредных химических веществ, поступающих и образующихся в воде в процессе ее обработки в системе водоснабжения.  
прочитать

*       Нормативы содержания вредных химических веществ, наиболее часто встречающихся в природных водах на территории Российской Федерации, а также веществ антропогенного происхождения, получивших глобальное распространение.  
прочитать

*       Гигиенические нормативы содержания некоторых вредных веществ, поступающих в источники водоснабжения в результате хозяйственной деятельности человека: неорганические вещества.  
прочитать

*       Гигиенические нормативы содержания некоторых вредных веществ, поступающих в источники водоснабжения в результате хозяйственной деятельности человека: органические вещества.  
прочитать

 

Микробиологические и паразитологические показатели

Наименование показателя

Норматив

Термотолерантные колиформные бактерии, число в 100 мл

Отсутствие

Общие колиформные бактерии, число в 100 мл

Отсутствие

Общее микробное число, число образующихся колоний бактерий в 1 мл

Не более 50

Колифаги, число бляшкообразующих единиц (БОЕ) в 100 мл

Отсутствие

Споры сульфитредуцирующих клостридий, число спор в 20 мл

Отсутствие

Цисты лямблий, число цист в 50 мл

Отсутствие

 

Органолептические показатели

Наименование показателя

Норматив

Запах, баллы

2

Привкус, баллы

2

Цветность, градусы Pt-Co шкалы

20 (35)

Мутность, ЕМФ (ед.мутности по формазину) или мг/дм3 (по каолину)

1.5 (2)


По согласованию с органами санитарно-эпидемиологической службы допускается увеличение цветности воды до 35°, мутности (в паводковый период) - до 2 мг/дм3.

 

Содержание вредных химических веществ, поступающих и образующихся в воде в процессе ее обработки в системе водоснабжения

Наименование показателя

Норматив, не более

Показатель вредности

Класс опасности

Хлор остаточный
свободный, мг/дм3

в пределах 0,3-0,5

органолептический

3

Хлор остаточный общий,
мг/дм3

в пределах 0,8-9,0

органолептический

3

Хлороформ (при хлорировании воды), мг/дм3

0,2

санитарно - токсикологический

2

Озон остаточный, мг/дм3

0,3

органолептический

 

Формальдегид (при озонировании воды), мг/дм3

0,05

санитарно - токсикологический

2

Полиакриламид, мг/дм3

2,0

санитарно - токсикологический

2

Активированная кремнекислота (по Si), мг/дм3

0,5

санитарно - токсикологический

2

Полифосфаты (по РО43-), мг/дм3

3,5

органолептический

3

Остаточные количества коагулянтов, мг/дм3

 

 

 

алюминийсодержащих
(по Al3+)

0,5

санитарно - токсикологический

2

железосодержащих (по Fe)

0,3

органолептический

3

 

 

Нормативы содержания вредных химических веществ, наиболее часто встречающихся в природных водах на территории Российской Федерации, а также веществ антропогенного происхождения, получивших глобальное распространение

Наименование показателя

Норматив, не более

Показатель вредности

Класс опасности

Водородный показатель, ед. рH

в пределах 6,0-9,0

 

 

Общая минерализация (сухой остаток), мг/дм3

1000 (1500)

 

 

Жесткость воды (карбонатная), ммоль/дм3

7 (1,0)

 

 

Окисляемость перманганатная, мг/дм3

5,0

 

 

Нефтепродукты, суммарно, мг/дм3

0,1

 

 

Поверхностно-активные вещества (ПАВ), анионоактивные, мг/дм3

0,5

 

 

Фенольный индекс, мг/дм3

0,25

 

 

Неорганические вещества

Алюминий (Al3+), мг/дм3

0,5

санитарно - токсикологический

2

Барий (Ва2+) , мг/дм3

0,1

-"-

2

Бериллий (Be2+), мг/дм3

0,0002

-"-

1

Бор (В), суммарно, мг/дм3

0,5

-"-

2

Железо (Fe), суммарно (хлорное), мг/дм3

0,3 (0,9)

органолептический

3(4)

Кадмий (Сd), суммарно, мг/дм3

0,001

санитарно - токсикологический

2

Марганец (Mn), суммарно, мг/дм3

0,1

органолептический

3

Медь (Cu2+ ), суммарно, мг/дм3

1,0

-"-

3

Молибден (Mo), суммарно, мг/дм3

0,25

-"-

2

Мышьяк (As), суммарно, мг/дм3

0,05

-"-

2

Никель (Ni), суммарно, мг/дм3

0,1

-"-

3

Нитраты (NO3-), мг/дм3

45,0

органолептический

3

Ртуть (Hg), суммарно, мг/дм3

0,0005

санитарно - токсикологический

1

Свинец (Pb), суммарно, мг/дм3

0,03

-"-

2

Селен (Se), суммарно, мг/дм3

0,01

-"-

2

Стронций (Sr2+ ), мг/дм3

7,0

-"-

2

Сульфаты (SO42-), мг/дм3

500

органолептический

4

Фториды (F), мг/дм3 для климатических районов:
I и II

1,5

санитарно - токсикологический

2

III

1,2

-"-

2

IV

0,7

-"-

2

Хлориды (Cl-), мг/дм3

350

органолептический

4

Хром (Cr6+), мг/дм3

0,05

санитарно - токсикологический

3

Цианиды (CN-), мг/дм3

0,035

-"-

2

Цинк (Zn), мг/дм3

5

органолептический

 

Органические вещества

Линдан, мг/дм3

0,002

санитарно - токсикологический

1

ДДТ (сумма изомеров), мг/дм3

0,002

-"-

2

2,4-Д

0,03

-"-

2

 

Содержание некоторых вредных веществ, поступающих в источники водоснабжения в результате хозяйственной деятельности человека: неорганические вещества

Наименование ингредиента

Лимитирующий показатель вредности

ПДК, мг/дм3

Неорганические

Аммиак (по азоту)

Общесанитарный

2

Барий

Органолептический

4

Ванадий

Санитарно-токсикологический

0,1

Железо

Органолептический

0,5

Кадмий

Санитарно-токсикологический

0,01

Кобальт

Санитарно-токсикологический

1

Медь

Органолептический

1

Молибден

Санитарно-токсикологический

0,5

Мышьяк

 

 

Никель

Санитарно-токсикологический

0,1

Нитраты (по азоту)

Санитарно-токсикологический

10

Роданиды

Санитарно-токсикологический

0,1

Ртуть

Санитарно-токсикологический

0,005

Свинец

Санитарно-токсикологический

0,1

Селен

Санитарно-токсикологический

0,001

Стронций (стабильный)

Санитарно-токсикологический

2

Сульфиды

Общесанитарный

Отсутствие

Сурьма

Санитарно-токсикологический

0,05

Теллур

Санитарно-токсикологический

0,01

Фтор (в соединениях)

Санитарно-токсикологический

1,5

Хлор активный с учетом хлоропоглощаемости воды

Общесанитарный

Отсутствие ( требование не относится к остаточному хлору, содержащемуся в обеззараженных сточных водах )

Хром (3+)

Органолептический

0,5

Хром (6+)

Органолептический

0,1

Цианиды (простые и комплексные)

Санитарно-токсикологический

0,1

Цинк

Общесанитарный

0,1

 

Содержание некоторых вредных веществ, поступающих в источники водоснабжения в результате хозяйственной деятельности человека: органические вещества

Наименование ингредиента

Лимитирующий показатель вредности

ПДК, мг/дм3

Органические

Алдрин

Органолептический

0,002

Алкилбензосульфонаты

Органолептический

0,5

Алкилсульфаты

Органолептический

0,5

Алкилсульфонаты

Органолептический

0,5

Ацетальдегид

Органолептический

0,2

Бензин

Органолептический

0,1

Бензол

Санитарно-токсикологический

0,5

Гексахлоран

Органолептический

0,02

Гидрохинон

Органолептический

0,2

ДДТ

Санитарно-токсикологический

0,1

Диэтиленгликоль

Санитарно-токсикологический

1

Диэтилртуть

Санитарно-токсикологический

0,0001

Капролактам

Общесанитарный

1

Керосин окисленный

Органолептический

0,01

Керосин осветительный

Органолептический

0,05

Керосин сульфированный

Органолептический

0,1

Керосин технический

Органолептический

0,01

Керосин тракторный

Органолептический

0,01

м-Крезол

Санитарно-токсикологический

0,004

п-Крезол

Санитарно-токсикологический

0,004

Ксилол

Органолептический

0,05

Меркаптофос

Органолептический

0,01

Метакриламид

Санитарно-токсикологический

0,1

Метанол

Санитарно-токсикологический

3

Метилметакрилат

Санитарно-токсикологический

0,01

Нафтеновые кислоты

Органолептический

0,3

Нефть многосернистая

Органолептический

0,1

Нефть прочная

Органолептический

0,3

Нитробензол

Санитарно-токсикологический

0,2

ПАВ

Органолептический

0,2

Пиридин

Санитарно-токсикологический

0,2

Резорцин

Общесанитарный

0,1

Сапонин

Органолептический

0,2

Сероуглерод

Органолептический

1

Симазин

Органолептический

Отсутствие

Тетраэтилсвинец

Санитарно-токсикологический

Отсутствие

Тиофос

Органолептический

0,2

Толуол

Органолептический

10,003

Фенилгидразин

Санитарно-токсикологический

0,01

Фенол

Органолептический

0,001

Формальдегид

Санитарно-токсикологический

0,05

Хлорбензол

Санитарно-токсикологический

0,02

Хлорофос

Органолептический

0,05

Циклогексан

Санитарно-токсикологический

0,1

Четыреххлористый углерод

Санитарно-токсикологический

0,3

Этиленгликоль

Санитарно-токсикологический

1

 

 

Меню каталога

Баннер
Быстрая связь
Ваше имя*
E-mail*
Телефон
Сообщение*

Введите число, изображенное на картинке (*):
captcha

Контактная информация Карта сайта